Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265865

RESUMO

Dpp/BMP acts as a morphogen to provide positional information in the Drosophila wing disc. Key cell-surface molecules to control Dpp morphogen gradient formation and signaling are heparan sulfate proteoglycans (HSPGs). In the wing disc, two HSPGs, the glypicans Division abnormally delayed (Dally) and Dally-like (Dlp) have been suggested to act redundantly to control these processes through direct interaction of their heparan sulfate (HS) chains with Dpp. Based on this assumption, a number of models on how glypicans control Dpp gradient formation and signaling have been proposed, including facilitating or hindering Dpp spreading, stabilizing Dpp on the cell surface, or recycling Dpp. However, how distinct HSPGs act remains largely unknown. Here, we generate genome-engineering platforms for the two glypicans and find that only Dally is critical for Dpp gradient formation and signaling through interaction of its core protein with Dpp. We also find that this interaction is not sufficient and that the HS chains of Dally are essential for these functions largely without interacting with Dpp. We provide evidence that the HS chains of Dally are not essential for spreading or recycling of Dpp but for stabilizing Dpp on the cell surface by antagonizing receptor-mediated Dpp internalization. These results provide new insights into how distinct HSPGs control morphogen gradient formation and signaling during development.


Assuntos
Proteínas de Drosophila , Drosophila , Proteoglicanas de Heparan Sulfato , Glicoproteínas de Membrana , Proteoglicanas , Animais , Membrana Celular , Drosophila/crescimento & desenvolvimento , Glipicanas , Heparitina Sulfato
2.
Chembiochem ; 23(6): e202100643, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35080802

RESUMO

Azoreductases require NAD(P)H to reduce azo dyes but the high cost of NAD(P)H limits its application. Formate dehydrogenase (FDH) allows NAD(P)+ recycling and therefore, the fusion of these two biocatalysts seems promising. This study investigated the changes to the fusion protein involving azoreductase (AzoRo) of Rhodococcus opacus 1CP and FDH (FDHC23S and FDHC23SD195QY196H ) of Candida boidinii in different positions with His-tag as the linker. The position affected enzyme activities as AzoRo activity decreased by 20-fold when it is in the N-terminus of the fusion protein. FDHC23S +AzoRo was the most active construct and was further characterized. Enzymatic activities of FDHC23S +AzoRo decreased compared to parental enzymes but showed improved substrate scope - accepting bulkier dyes. Moreover, pH has an influence on the stability and activity of the fusion protein because at pH 6 (pH that is suboptimal for FDH), the dye reduction decreased to more than 50 % and this could be attributed to the impaired NADH supply for the AzoRo part.


Assuntos
Formiato Desidrogenases , NAD , Biocatálise , Corantes , Formiato Desidrogenases/química , NAD/metabolismo , Nitrorredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...